
IIn "Developing a Virtual Hardware

Device"1 Michael Smith gave a
breakdown of the time spent on the
various activities of the software
development process. He allotted
215% to "Waiting for Hardware". We
think this is an underestimate and
that if you can proceed with the soft-
ware development in the absence of
hardware, time-to-market can be
reduced in some cases by an order
of magnitude.

As you will see from this article, it
is now possible to develop and
debug a complete embedded pro-
gram for the 8051 microcontroller or
one of its variants without any target
hardware at all. The benefits extend
beyond time-to-market to encom-
pass the complete software life-
cycle.

At the beginning of this year we fin-
ished the development of a medical
product. This used high power
lasers to treat the patients skin and
so had to be carried out in
strict accordance with FDA
guidelines. The development
was completed in a total of 4
months and the software,
which was designed using
Real-Time UML2, was devel-
oped and verified almost
entirely using simulation.

The software was ready
long before the hardware and
when the prototypes were
handed over to the client we
were able to continue to pro-
vide support and to fully test
our enhancements before e-
mailing them to the client.

Maybe one day we will be able to tell
you more about this project but for
the time being our client wishes to
continue to enjoy the perception that
its new product was developed by its
in-house team.

A few years ago it was a different
story. We developed an instrument,
shown in photo 1, to measure the
slope and height of a flowing liquid.
This uses three lasers and three
position sensitive detectors, which
measure the displacement of the
reflected beams.

The instrument is positioned above
the liquid, mounted on a frame that
is not necessarily horizontal.
Therefore the instrument needs to
know its absolute orientation in
space so that it can compensate for
its own tilt. We embedded two
ceramic tilt sensors inside the instru-
ment to measure this tilt, calibrating
them throughout their range on an
adjustable tilt stage.

The height of the liquid is displayed
on a graphic LCD and an image of a
bubble is used to indicate the 2-axis
slope. The operator is required to
adjust the screws supporting the
tank that contains the liquid until the
bubble is in the centre of a circle
printed on the display and until the
height offset is zero. Using the
image of a bubble made it immedi-
ately familiar to the operator who
previously used a spirit level.

The software development process
was not easy. We had to have a
special board made so that we could
get started with the display. In order
to move our bubble around without
unacceptable delay, we had to cre-
ate six images and page the correct
one into view at the right location by
manipulating the graphics origin.

Embedded software
developers can now
escape from the con-
straints imposed by
the availability of the
target hardware.
Using an electronic
spirit level as an
example, Alan shows
us how to use the
Crossware 8051
Virtual Workshop to
simulate a complete
target system.

DEBUGGING USINGDEBUGGING USING
COMPLETE SYSTEMCOMPLETE SYSTEM
SIMULATIONSIMULATION

BY ALAN HARRY

Photo 1. The Crossware Optical Tilt Sensor measures
the slope and height of the surface of a flowing liquid.
Embedded tilt sensors allow the instrument to monitor
its own orientation in space.

This was difficult to get right when
our only guide was what we could or
could not see on the display.

We had to wait for the final board
before we could test other features
and we could not carry out any full
testing until the complete mechanical
unit, a precision assembly which
took a long time to make, was fin-
ished. We then found ourselves on
the critical path with everyone else
waiting for us to sort out our prob-
lems.

We recently revisited this project to
see how we would develop the soft-

ware today and so that we could
provide a real life example for users
of our development tools.

COMPLETE SYSTEM SIMULATION
The software that we use to simu-

late complete target systems is our
8051 Virtual Workshop. This simu-
lates the 8051 instruction set,
timer/counters, UART, interrupts, etc.
and it also has an interface that
allows it to be extended. This exten-
sion interface was originally imple-
mented to allow us to rapidly add
support for different 8051 variants.
We soon realised how powerful it
would become if we developed it fur-
ther and made it easy for users to
add their own extensions.

An extension takes the form of a
DLL which supports some or all of
the interface calls. It is given a spe-
cial filename so that the Virtual
Workshop will recognise it as an
extension. The interface is a set of

C function calls and so any
DLL written in C can be an
extension. However, in our
own extensions we create a
CExtensionState C++
object and immediately con-
vert the C call into a
CExtensionState function
call.

By writing the DLL in a
particular way and using
Microsoft Visual C++ to
build it, we can create an
extension that integrates
seamlessly with the Virtual
Workshop and the rest of
our development environ-
ment. We can add dialog
boxes, windows and menu
items using the Microsoft
graphical editor and Class
Wizard. We can also sup-
port the Virtual Workshop's
Capture State command
allowing the complete state
of the target system to be
captured and later restored.

Any number of extensions
can be added. The Virtual
Workshop looks for
esim0.dll, esim1.dll,
esim2.dll, etc. and loads
each in turn as it finds
them. This allows an
extension to be developed
specific to a particular
peripheral. The same
extension can then be re-

used elsewhere if the same periph-
eral is being used in a different tar-
get system.

Each extension will receive calls in
turn from the Virtual Workshop and it
can handle the ones that it chooses.
It is also possible for extensions to
communicate with each other and
we will describe how this can be
done using named pipes.

A VIRTUAL ELECTRONIC SPIRIT
LEVEL

So to return to our objective, we
are going to simulate a complete
sub-set of our measurement instru-
ment. For the purposes of this
example, we will leave out the lasers
and the position sensitive detectors.
We will simulate the display, A/D
converter, tilt sensors, battery and
keyswitches to create a virtual elec-
tronic spirit level.

When all of this is finished we will
have a set of component programs
all working together as shown in fig-
ure 1. We will briefly describe all of
these components in turn before
moving to the details of our target
board specific extensions.

The Embedded Development
Studio (estudio.exe) is the develop-
ment environment that provides proj-
ect management and editing facilities
and allows you to compile and
assemble your source code.
Whenever you select 8051 as the
target microcontroller it will load and
initialise the 8051 Virtual Workshop
(sim.dll).

There is a lot of interaction
between the Embedded
Development Studio and the Virtual

LISTING ONE. The Virtual Workshop can detect a falling
edge on a port pin and if appropriate generate an inter-
rupt.

#define P2 0XA0
#define P3 0XB0

#define KEY1PIN 0X02 // P2.1
#define KEY2PIN 0X04 // P2.2
#define KEY3PIN 0X08 // P2.3

void CExtensionState::GetPortPins(BYTE nPortAddress, BYTE* pnPins,
BYTE* pnHandledPins, BOOL bSimulating)
{

switch (nPortAddress)
{

case P2:
if (m_pKeys->IsKey1Pressed()) // interrogate the dialog box
{

*pnPins &= ~KEY1PIN; // clear pin
*pnHandledPins |= KEY1PIN; // pin handled

}
else
{

*pnPins |= KEY1PIN; // set pin
*pnHandledPins |= KEY1PIN; // pin handled

}
if (m_pKeys->IsKey2Pressed()) // interrogate the dialog box
{

// clear appropriate pin and trigger EX0 with a falling edge
*pnPins &= ~KEY2PIN; // clear pin
*pnHandledPins |= KEY2PIN; // pin handled

}
else
{

*pnPins |= KEY2PIN; // set pin
*pnHandledPins |= KEY2PIN; // pin handled

}
if (m_pKeys->IsKey3Pressed()) // interrogate the dialog box
{

*pnPins &= ~KEY3PIN; // clear pin
*pnHandledPins |= KEY3PIN; // pin handled

}
else
{

*pnPins |= KEY3PIN; // set pin
*pnHandledPins |= KEY3PIN; // pin handled

}
break;

case P3:
// trigger an interrupt if any key is pressed
if (m_pKeys->IsKey1Pressed() || m_pKeys->IsKey2Pressed() ||

m_pKeys->IsKey3Pressed())
{

// P3.2 goes low for external interrupt 0
*pnPins &= ~0X04;

// clear P3.2
*pnHandledPins |= 0X04; // P3.2 handled

}
else
{

// P3.2 high
*pnPins |= 0X04; // set P3.2
*pnHandledPins |= 0X04; // P3.2 handled

}
break;

}
}

LISTING TWO. The developer can set break-
points in and single step through interrupt
routines just as for normal routines.

void _interrupt IVN_INTERRUPT0 _using 1 KeyPress()
{

unsigned char i;
unsigned char nKeyPressed;
unsigned char nKeyMask;
unsigned char nKeyMaskCheck;
_ie0 = 0; // clear the interrupt flag
nKeyMask = _p2; // read port 2
ResetWatchDog();
for (i = 0; i < 10; i++); // delay
// read port 2 a second time to debounce the keys
nKeyMaskCheck = _p2;

if (nKeyMask == nKeyMaskCheck)
{

// The same data was read both times,
// so assume valid keypress
switch (nKeyMask)
{

case 253: // 11111101
KeyOneResponse();
break;

case 251: // 11111011
KeyTwoResponse();
break;

case 247: // 11110111
KeyThreeResponse();
break;

}
}

}

Photo 2. The
three keyswitches
will be positioned
immediately to
the right of the
display. Legends
on the display will
change as the
functions of the
keyswitches
change.

Workshop. The Embedded
Development Studio tells the Virtual
Workshop all about the target pro-
gram and source level break points.
The Virtual Workshop places addi-
tional windows, menus and toolbars
in the Embedded Development
Studio environment.

When the 8051 program is ready to
run, the user selects an appropriate
command such as Go or StepInto
and the Virtual Workshop starts to
do its work. It asks the Embedded
Development Studio where it should
look for extensions and it loads and
initialises any that it finds. It loads
the 8051 program and starts to simu-
late it instruction by instruction. At
this point all DLLs are running and
all are getting calls from the Virtual
Workshop as the simulation pro-
ceeds.

Extension esim.dll provides support
for the extra features provided by the
Dallas DS2250. This includes a
watchdog timer, additional interrupts,
banked ram, etc. It comes as part of

the Virtual Workshop package and is
automatically selected when the
DS2250 variant is chosen in the
Embedded Development Studio.

Then we have the four custom
extensions esim0.dll, esim1.dll,
esim2.dll and esim3.dll which we will
develop specifically for our target
system.

Finally mfc42.dll contains the
Microsoft Foundation Classes - a
comprehensive C++ interface to
Microsoft Windows. It is important to
realise that this DLL is being used by
all components. Without this link it
would not be possible for the compo-
nents to integrate graphically with
each other in such a seamless way.

It is worth mentioning at this point
that when you are developing a
Virtual Workshop extension you can

run it in the
Microsoft debug-
ging environment.
When you first run
it from the Start
Debug menu, you
will be asked what
EXE program your
DLL is associated
with. You will
specify estudio.exe
and the whole
Embedded
Development
Studio environ-
ment will fire up.
You can set break-
points in your DLL,
and execution will
halt whenever they
are reached. You
can then single
step though it and
observe its behav-
iour.

FOUR CUSTOM EXTENSIONS
We will now describe our custom

extensions in turn, starting with the
simplest esim3.dll and working our
way backwards to esim0.dll.

The Virtual Workshop comes with
an AppWizard. This program inter-
acts with the Microsoft environment
so that when you create a new
Microsoft C++ project you have the
choice to create a Crossware 8051
Virtual Workshop Extension. When
you do, the source code for a com-
plete extension will be created,
immediately ready for you to cus-
tomise and build.
To customise esim3.dll, we will cre-

ate a modeless dialog box contain-
ing three buttons (photo 2). This is
done using the normal Microsoft
graphical tools
with the outline
code and vari-
ables being
generated by
the Microsoft
Class Wizard.
We need to
make it a mod-
eless dialog
box by adding
the Create call
to the class
constructor,
remembering
also to make
its style visible.

It all takes about 10 minutes.
We then need to modify the

CExtensionState class by adding
code to create the dialog box object
and to interrogate its buttons when-
ever CExtensionState::GetPortPins
is called. And that is essentially it.
There are some cosmetic features
you might like to add such as saving
the position of the dialog box so that
you can restore it to the same place
on your screen when the extension
is next started.

In total, it takes about 30 minutes
to create a set of virtual keyswitches.

The code that we need to add to
GetPortPins depends of course on
the electronic circuit that we are sim-
ulating. The circuit is shown in fig-
ure 2. This shows each keyswitch
connected to its own microcontroller
port pin and all of them also con-

LISTING THREE. Writing to an external address at or above 8000 hex.
will access the display data bus. The HandleCommand routine does
the hard work.

BOOL CExtensionState::SetXDataMemory(int nAddress, BYTE nValue, BOOL bSimulating)
{

if (m_bChipEnabled && nAddress >= 0X8000)
{

if (m_bCommandMode)
{

// program is writing a command byte
m_nCommand = nValue;
HandleCommand();

}
else
{

// program is writing a data byte
if (m_bDataAutoWrite)
{

// place the byte in memory and increment the memory pointer
m_Memory[m_nAddressPointer++] = nValue;
if (g_pDisplayDlg)
{

// show the updated memory pointer in the dialog box
g_pDisplayDlg->SetAddressPointer(m_nAddressPointer);

}
}
else
{

// keep track of the lst two data bytes for use
// by the next command
m_nData[1] = m_nData[0];
m_nData[0] = nValue;

}
}
m_nBusy = 4; // time 4 micro-second busy period
// tell the Virtual Workshop that this extension has
// handled SetXDataMemory by returning TRUE
return TRUE;

}
return FALSE;

}

Figure 1 -When the virtual electronic spirit level is
running, the four custom DLLs (esim0.dll, esim1.dll,
esim2.dll, and esim3.dll) will integrate with the rest
of the Crossware development environment.

Photo 3. The image of the LCD and the status of
the display driver attributes allow the developer
to easily see if the embedded program is func-
tioning as intended.

nected to INT0. So pressing a
keyswitch causes an interrupt and
the 8051 program can respond to
this interrupt and interrogate port 2
to determine which keyswitch
caused it.

GetPortPins is called repeatedly
after each instruction is simulated.
This allows the Virtual Workshop to
be sensitive to falling edge, rising
edge and level sensitive external
interrupts. The extension therefore
only needs to apply the correct lev-
els to the pins that it controls. It
does this by setting or clearing
appropriate bits of *pnPins and
telling the Virtual Workshop that it
has set or cleared a particular bit by
setting the corresponding bit
*pnHandledPins.

Listing 1 shows the complete
GetPortPins function and listing 2
shows the code of the 8051 interrupt

function that reads the keys.

GRAPHIC LCD DISPLAY MOD-
ULE
Now we will turn our attention to
the extension for the LCD display.
You can see from the circuit dia-
gram that the data bus of the dis-
play is connected to port 0 of the
microcontroller and the /WR and
/RD pins of the display and micro-
controller are connected together.
The microcontroller will therefore
write to or read from the display
whenever it writes to or reads from
off-chip external data memory. For
our DS2250, this is whenever the
xdata address is above 8000 hex.
We will therefore use
CExtensionState::SetXDataMemory
to determine if the display is being
written to, and
CExtensionState::GetXDataMemory

to determine if the display is being
read.

You can also see that the chip
enable of the display is connected to
P2.5. We will use
CExtensionState::SetPortPins to
keep track of this pin. We can then
ignore all reads and writes unless
the display is enabled. Similarly we
will monitor P2.6 to determine
whether the display is in command
mode or data mode. Listing 3 shows
code for SetXDataMemory.
HandleCommand does all of the
interpretation of the display driver
commands and is partly shown in
listing 4.

You will notice variable
g_pDisplayDlg. This points to a dia-
log box (photo 3) which displays the
LCD and its attributes. As with the
keyswitches, this dialog box and
associated code can be quickly cre-
ated using the Microsoft graphics
editor and Class Wizard.

However, since we are displaying
graphics in the dialog box we have
to create a CWnd object and sub-
class it to a placeholder in the dialog
box. Our CWnd object will then get
all of the Windows messages that
the placeholder would have received
and it can draw an image of the dis-
play into the placeholders window
area. Sub-classing can be easily
done with a single call to the MFC
function SubclassDlgItem.

You can see in photo 3 that as well
as an image of the display, we are
also showing the attributes and state
of the display driver chip. This
makes development of our 8051 pro-
gram much easier because we can
directly see if it is doing the things
that we expect it to be doing.

We also have to take account of
timing. The display driver requires 4
micro-seconds to process a byte.
Our 8051 program will poll the dis-
plays status byte to determine when

Photo 5. Three separate threads, one for each
sensor and one for the battery, service named
pipes so that the A/D converter can retrieve suit-
ably scaled values from this dialog box.

LISTING FOUR. The data bytes have already been received when the command byte
has been written. These have been stored and can be used if the command needs
them.

void CExtensionState::HandleCommand()
{

CString strCommand;
switch (m_nCommand & 0XF0)
{

case CONTROL_WORD_SET:
switch (m_nCommand & 0X0F)
{

case TEXT_HOME_ADDRESS_SET:
strCommand = “Text home address set”;
m_nTextHomeAddress = m_nData[0] << 8 | m_nData[1];
if (g_pDisplayDlg)

g_pDisplayDlg->SetTextHomeAddress(m_nTextHomeAddress);
break;

case TEXT_AREA_SET:
strCommand = “Text area set”;
m_nTextArea = m_nData[0] << 8 | m_nData[1];
if (g_pDisplayDlg)

g_pDisplayDlg->SetTextArea(m_nTextArea);
break;

case GRAPHICS_HOME_ADDRESS_SET:
strCommand = “Graphics home address set”;
m_nGraphicsHomeAddress = m_nData[0] << 8 | m_nData[1];
if (g_pDisplayDlg)

g_pDisplayDlg->SetGraphicsHomeAddress(m_nGraphicsHomeAddress);
break;

case GRAPHICS_AREA_SET:
strCommand = “Graphics area set”;
m_nGraphicsArea = m_nData[0] << 8 | m_nData[1];
if (g_pDisplayDlg)

g_pDisplayDlg->SetGraphicsArea(m_nGraphicsArea);
break;

default:
strCommand = “Invalid command”;
break;

}
break;

case DATA_READ_WRITE:
switch (m_nCommand & 0X0F)
{

case DATA_WRITE_AND_INCREMENT:
strCommand = “Data write and increment”;
m_Memory[m_nAddressPointer++] = m_nData[0];
if (g_pDisplayDlg)
{

g_pDisplayDlg->UpdateDisplay(m_Memory, m_nAddressPointer - 1);
g_pDisplayDlg->SetAddressPointer(m_nAddressPointer);

}
break;

case DATA_WRITE_AND_DECREMENT:
strCommand = “Data write and decrement”;
m_Memory[m_nAddressPointer—] = m_nData[0];
if (g_pDisplayDlg)
{

g_pDisplayDlg->UpdateDisplay(m_Memory, m_nAddressPointer + 1);
g_pDisplayDlg->SetAddressPointer(m_nAddressPointer);

}
break;

.....................

.....................

.....................

default:
strCommand = “Invalid command”;
break;

}
if (g_pDisplayDlg)

g_pDisplayDlg->ShowCommand(strCommand);
}

the display is ready to receive anoth-
er byte and so our simulation needs
to incorporate a busy flag in order to
cater for this.

We use
CExtensionState::IncMachineCycles
to time out the busy flag.
IncMachineCycles is called after
each instruction is simulated with an
argument that contains the number
of machine cycles elapsed since the
last call. Therefore it allows us to
implement cycle accurate features in
our extension.

THE A/D CONVERTER
Moving on to esim1.dll, the A/D

converter that this extension simu-
lates is driven by port 1 of the micro-
controller. Our extension for this
device will therefore use
CExtensionState::SetPortPins to
monitor the output from this port and
CExtensionState::GetPortPins to
send data back to it.

To help us get the simulation right,
we have constructed a UML style
statechart depicting the operation of
the device. This is based on the
description in the manufacturer's
data sheet and is shown in figure 3.

The code in SetPortPins and
GetPortPins is based upon this stat-
echart and, if we had had the knowl-
edge to construct this statechart a
few years ago when we were devel-
oping the original instrument, it
would have helped us with the
development of our original 8051
program too.

Photo 4 shows the dialog box that
we have constructed for the A/D
converter. This displays the attrib-
utes of the device and also allows us
to directly enter data representing
the voltage level on its inputs.

NAMED PIPES
However, we really want the inputs

to the A/D converter simulation to
come from the tilt sensors and bat-
tery and, for re-usability reasons,
these are supported in a separate
extension. To communicate between
the two extensions we have used
named pipes. Extension esim0.dll
creates three named pipes, which it
calls TiltSensor1, TiltSensor2 and
Battery, and esim1.dll connects to
these named pipes and requests
data from the appropriate one when
it needs an input level.

Named pipes work system wide
and the operating system looks after
the details. To the program, they
behave just like files. To service a
pipe, esim0.dll must create a sepa-
rate thread. It then loops continu-
ously and most of the time waits for
a return from the ReadFile function.
When this function returns, it is in
response to a request for data and
so the thread gathers the data and
sends it back to the requestor using
the WriteFile function.

Extension esim0.dll will therefore
create three separate threads and
there will be three separate channels
of communication between esim0.dll
and esim1.dll. The tilt sensors and

Photo 4. The simulating A/D converter can fetch
its inputs from the dialog box edit fields or from
named pipes running anywhere else on the sys-
tem.

Figure 2. The electronic spirit level is a sub-set of the Crossware Optical Tilt Sensor. It
uses two cermic incinometers to detect orientation in two axes. A moving image of a
bubble on the graphics LCD makes it immediately familiar to users.

battery charge can then be separate-
ly controlled using the dialog box
shown in photo 5.

We simulate drain on the battery
by using the IncMachineCycles func-
tion in which we decrement a vari-
able representing the state of charge

at a rate which corresponds with
the rate of simulation. Similarly we
simulate charging by incrementing
this same variable whenever the
charge check box is checked.

We use the MFC function
fxBeginThread to start each new
thread. This is quick and easy but
care must be taken when accessing
Windows functions. Any action on a
window handle other than using it to
post a message is likely to fail. We
therefore program the dialog box to
independently keep the three vari-
ables m_nTiltSensor1,
m_nTiltSensor2 and m_nBattery up-
to-date and use a CCriticalSection to

ensure that these variables are not
accessed simultaneously from sepa-
rate threads.

DEBUGGING WITHOUT HARD-
WARE

With all of our extensions in place
we can now run a complete simula-
tion of our target system and use it
to develop our 8051 program. We
can add additional features to the
extensions to trap error conditions or
to automate testing.

You will notice, if you examine the
source code for the custom exten-
sions in detail, that we have not sim-
ulated everything. In particular,
there are many features in the dis-
play driver that we do not use and so
have not added support for. The
objective is to speed up develop-
ment and support the verification
and life cycle processes. Spending
time providing features that will not

be used does not support that objec-
tive.

It took two to three days to develop
our four extensions, with the display
extension requiring the majority of
this effort. The benefits of being
able to see the internal attributes of
the display driver and A/D converter,
to be able to test a wide range of tilt
sensor inputs, to be able to auto-
mate the testing process, to be able
to do all this independently and at
any time makes it worthwhile even
where the real hardware is available.

If you are really looking for bene-
fits, how about emailing your require-
ments specification and Virtual
Workshop extensions to a low cost
resource on the other side of the
world and getting them to develop
your program while you spend some
time on the beach. Then again,
developing your embedded program
is not going to be quite as difficult as
it otherwise would, and you will see
quite enough of the beach while you
are waiting for the hardware to catch
up.

Alan Harry is the founder and man-
aging director of Crossware, a devel-
oper of programmer-friendly C cross
compilers and other development
tools for embedded systems based
on the 8051, ColdFire, 68000,
CPU32 and other chip families. He
also heads up a multi-disciplinary
product development consultancy
working on leading-edge develop-
ments for international clients.

REFERENCES
1. Michael Smith, Developing a
Virtual Hardware Device, Circuit
Cellar Ink, 64, 36-45, November
1995.

2. Bruce Powel Douglass, Real-Time
UML, Developing Efficient Objects
for Embedded Systems, Addison-
Wesley, ISBN 0-201-32579-9.

SOURCES
8051 Virtual Workshop
Crossware Products
Old Post House
Silver Street
Litlington
Royston
Herts
SG8 0QE
UK

Figure 3. A manufacturer’s data sheets will usually give a written description of the operation
of a device. It is often easier to understand the detailed operation of the device if this
description is translated into a UML style statechart. This statechart shows an approxima-
tionof the LTC1290 A/D converter.

Tel: + 44 (0) 1763 853500
Fax: + 44 (0) 1763 853330
Web: http://www.crossware.com

Graphics LCD Module
MGLS12864T-LV2
VL ELECTRONICS, INC.
3250 Wilshire Blvd., Suite 1901,
Los Angeles, CA 90010,
U.S.A.
Tel: (213) 738-8700
Fax: (213) 738-5340
Web: http://www.vle.com

LCD Driver Chip T6963C
Toshiba America
Electronic Components, Inc.
3700 Crestwood Parkway
Suite 460
Duluth, GA 30136
Tel: (770) 931-3363
Fax: (770) 931-7602
http://www.toshiba.com

A/D Converter LTC1290
Linear Technology Corporation
720 Sycamore Drive
Milpitas, CA 95035
Tel: (408) 432-1900
Fax: (408) 434-0507
http://www.linear-tech.com

SH50055 Tilt Sensor and Driver
Spectron Glass and Electronics Inc.
595 Old Willets Path
Hauppauge, NY 11788
Phone: (516) 582-5600
Fax: (516) 582-5671
http://www.spectronsensors.com

T2250 Soft Microcontroller
Dallas Semiconductor
4401 South Beltwood Parkway

Dallas, TX 75244
Tel: (972) 371-4167
Fax: (972) 371-3715
http://www.dalsemi.com/

LISTING FIVE. Using named pipes is a convinient way of communicating between extensions.
The operating system does the hard work of connecting the ends and routing data between
them.

// the routine in esim0.dll that is running three times
// in three separate threads

CCriticalSection g_CriticalSection;

UINT PipeRoutine(void* pParam)
{

const char* pszName = (const char*)pParam;
CString strPipeName;
strPipeName.Format(“\\\\.\\pipe\\%s”, pszName);
HANDLE hPipe = CreateNamedPipe(strPipeName,

PIPE_ACCESS_DUPLEX, // dwOpenMode
PIPE_TYPE_MESSAGE |
PIPE_READMODE_MESSAGE |
PIPE_WAIT,
PIPE_UNLIMITED_INSTANCES,
BUFSIZE,
BUFSIZE,
PIPE_TIMEOUT,
NULL);

if (hPipe == INVALID_HANDLE_VALUE)
{

CString strMessage;
strMessage.Format(“Could not create pipe %s”, strPipeName);
AfxMessageBox(strMessage);
return 0;

}
BOOL bConnected = ConnectNamedPipe(hPipe, NULL) ? TRUE : (GetLastError() == ERROR_PIPE_CONNECTED);
if (!bConnected)
{

// exit thread
CString strMessage;
strMessage.Format(“Could not connect to pipe %s”, strPipeName);
AfxMessageBox(strMessage);
return 0;

}
CSingleLock AccessToExtensionState(&g_CriticalSection);
while (nExtensionCount > 0)
{

char chRequest[BUFSIZE];
char chReply[BUFSIZE];
DWORD nBytesRead, nReplyBytes, nWritten;
BOOL bSuccess = ReadFile(hPipe, chRequest, BUFSIZE, &nBytesRead, NULL);
if (!bSuccess || nBytesRead == 0)

break;
AccessToExtensionState.Lock();
g_pExtensionState->GetAnswerToRequest(chRequest, chReply, &nReplyBytes, pszName);
AccessToExtensionState.Unlock();

bSuccess = WriteFile(hPipe, chReply, nReplyBytes, &nWritten, NULL);
if (!bSuccess || nReplyBytes != nWritten)

break;

}
FlushFileBuffers(hPipe);
DisconnectNamedPipe(hPipe);
CloseHandle(hPipe);
return 0;

}

// CExtensionState constructor in esim0.dll
// tilt sensors and battery extension

CExtensionState::CExtensionState()
{

....

....

....
g_pExtensionState = this; // let threads access class functions
AfxBeginThread(PipeRoutine, (void*)”TiltSensor1”);
AfxBeginThread(PipeRoutine, (void*)”TiltSensor2”);
AfxBeginThread(PipeRoutine, (void*)”Battery”);
....
....

}

// CExtensionState constructor in esim1.dll
// A/D Converter extension

CExtensionState::CExtensionState()
{

....

....

....
for (int i = 0; i < NO_OF_CHANNELS; i++)
{

m_hPipe[i] = INVALID_HANDLE_VALUE;
}
m_hPipe[5] = OpenNamedPipe(“Battery”);
m_hPipe[6] = OpenNamedPipe(“TiltSensor1”);
m_hPipe[7] = OpenNamedPipe(“TiltSensor2”);

}

Crossware Products, Old Post House, Silver Street, Litlington,
Royston, Herts, SG8 0QE, United Kingdom
Telephone: + 44 (0) 1763 853500, Facsimile: + 44 (0) 1763 853330
E-mail: sales@crossware.com, Web: http://www.crossware.com

